Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(2): H418-H425, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099845

RESUMO

Cardiac arrhythmias significantly contribute to mortality in Duchenne muscular dystrophy (DMD), a severe muscle illness caused by mutations in the gene encoding for the intracellular protein dystrophin. A major source for arrhythmia vulnerability in patients with DMD is impaired ventricular impulse conduction, which predisposes for ventricular asynchrony, decreased cardiac output, and the development of reentrant circuits. Using the dystrophin-deficient mdx mouse model for human DMD, we previously reported that the lack of dystrophin causes a significant loss of peak Na+ current (INa) in ventricular cardiomyocytes. This finding provided a mechanistic explanation for ventricular conduction defects and concomitant arrhythmias in the dystrophic heart. In the present study, we explored the hypothesis that empagliflozin (EMPA), an inhibitor of sodium/glucose cotransporter 2 in clinical use to treat type II diabetes and nondiabetic heart failure, rescues peak INa loss in dystrophin-deficient ventricular cardiomyocytes. We found that INa of cardiomyocytes derived from mdx mice, which had received clinically relevant doses of EMPA for 4 wk, was restored to wild-type level. Moreover, incubation of isolated mdx ventricular cardiomyocytes with 1 µM EMPA for 24 h significantly increased their peak INa. This effect was independent of Na+-H+ exchanger 1 inhibition by the drug. Our findings imply that EMPA treatment can rescue abnormally reduced peak INa of dystrophin-deficient ventricular cardiomyocytes. Long-term EMPA administration may diminish arrhythmia vulnerability in patients with DMD.NEW & NOTEWORTHY Dystrophin deficiency in cardiomyocytes leads to abnormally reduced Na+ currents. These can be rescued by long-term empagliflozin treatment.


Assuntos
Compostos Benzidrílicos , Diabetes Mellitus Tipo 2 , Glucosídeos , Distrofia Muscular de Duchenne , Animais , Camundongos , Humanos , Distrofina/genética , Camundongos Endogâmicos mdx , Miócitos Cardíacos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Distrofia Muscular de Duchenne/genética , Arritmias Cardíacas/metabolismo , Sódio/metabolismo , Modelos Animais de Doenças
2.
Front Cardiovasc Med ; 10: 1242763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795481

RESUMO

Introduction: Transverse-aortic constriction (TAC) operation is a widely used animal model to induce hypertrophy and heart failure through left-ventricular pressure overload. In mice, the cardiac response to TAC exhibits considerable variability influenced by factors such as strain, sub-strain, age, sex and vendor. Methods: To investigate the impact of suture material (silk versus prolene) and size (6-0 versus 7-0) on the TAC-induced phenotype, we performed surgeries on male C57BL6/N mice at 9 weeks of age defining the aortic constriction by a 27G needle, thereby employing most frequently used methodological settings. The mice were randomly assigned into four separate groups, 6-0 silk, 7-0 silk, 6-0 prolene and 7-0 prolene (10 mice per group). Echocardiography was conducted before TAC and every 4 weeks thereafter to monitor the development of heart failure. Repeated measures correlation analysis was employed to compare disease progression among the different groups. Results: Our findings reveal a significant influence of the chosen suture material on TAC outcomes. Mice operated with prolene showed increased mortality, slower body weight gain, faster left-ventricular mass increase, and a faster decline in left-ventricular ejection fraction, fractional shortening and aortic pressure gradient compared to silk-operated mice. Moreover, despite non significant, using thinner suture threads (7-0) tended to result in a more severe phenotype compared to thicker threads (6-0) across all tested parameters. Discussion: Collectively, our results highlight the importance of suture material selection in determining the cardiac phenotype induced by TAC and emphasize the need to consider this factor when comparing data across different research laboratories.

3.
Physiol Rep ; 11(7): e15664, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37032434

RESUMO

The muscular dystrophies caused by dystrophin deficiency, the so-called dystrophinopathies, are associated with impaired cardiac contractility and arrhythmias, which considerably contribute to disease morbidity and mortality. Impaired Ca handling in ventricular cardiomyocytes has been identified as a causative factor for complications in the dystrophic heart, and restoration of normal Ca handling in myocytes has emerged as a promising new therapeutic strategy. In the present study, we explored the hypothesis that ivabradine, a drug clinically approved for the treatment of heart failure and stable angina pectoris, improves Ca handling in dystrophic cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Therefore, ventricular cardiomyocytes were isolated from the hearts of adult dystrophin-deficient DMDmdx rats, and the effects of acutely applied ivabradine on intracellular Ca transients were tested. In addition, the drug's acute impact on cardiac function in DMDmdx rats was assessed by transthoracic echocardiography. We found that administration of ivabradine to DMDmdx rats significantly improved cardiac function. Moreover, the amplitude of electrically induced intracellular Ca transients in ventricular cardiomyocytes isolated from DMDmdx rats was increased by the drug. We conclude that ivabradine enhances Ca release from the sarcoplasmic reticulum in dystrophic cardiomyocytes and thereby improves contractile performance in the dystrophic heart.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Camundongos , Ratos , Animais , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/tratamento farmacológico , Ivabradina/farmacologia , Ivabradina/uso terapêutico , Camundongos Endogâmicos mdx , Miócitos Cardíacos , Modelos Animais de Doenças
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768204

RESUMO

Inherited deficiency in ether lipids, a subgroup of glycerophospholipids with unique biochemical and biophysical properties, evokes severe symptoms in humans resulting in a multi-organ syndrome. Mouse models with defects in ether lipid biosynthesis have widely been used to understand the pathophysiology of human disease and to study the roles of ether lipids in various cell types and tissues. However, little is known about the function of these lipids in cardiac tissue. Previous studies included case reports of cardiac defects in ether-lipid-deficient patients, but a systematic analysis of the impact of ether lipid deficiency on the mammalian heart is still missing. Here, we utilize a mouse model of complete ether lipid deficiency (Gnpat KO) to accomplish this task. Similar to a subgroup of human patients with rhizomelic chondrodysplasia punctata (RCDP), a fraction of Gnpat KO fetuses present with defects in ventricular septation, presumably evoked by a developmental delay. We did not detect any signs of cardiomyopathy but identified increased left ventricular end-systolic and end-diastolic pressure in middle-aged ether-lipid-deficient mice. By comprehensive electrocardiographic characterization, we consistently found reduced ventricular conduction velocity, as indicated by a prolonged QRS complex, as well as increased QRS and QT dispersion in the Gnpat KO group. Furthermore, a shift of the Wenckebach point to longer cycle lengths indicated depressed atrioventricular nodal function. To complement our findings in mice, we analyzed medical records and performed electrocardiography in ether-lipid-deficient human patients, which, in contrast to the murine phenotype, indicated a trend towards shortened QT intervals. Taken together, our findings demonstrate that the cardiac phenotype upon ether lipid deficiency is highly heterogeneous, and although the manifestations in the mouse model only partially match the abnormalities in human patients, the results add to our understanding of the physiological role of ether lipids and emphasize their importance for proper cardiac development and function.


Assuntos
Éter , Plasmalogênios , Animais , Humanos , Camundongos , Éteres , Etil-Éteres , Coração , Mamíferos/metabolismo
5.
Eur J Pharmacol ; 941: 175495, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36621601

RESUMO

Alterations in cardiac impulse conduction may exert both beneficial and detrimental effects. The assessment of ventricular conduction properties is of paramount importance both in clinical and in experimental settings. Currently the duration of the QRS complex is regarded as hallmark of in-vivo assessment of global ventricular conduction time. In addition, the amplitude of the QRS complex has been suggested to reflect ventricular conduction time in man and in rats. Here, for the first time, we systematically investigated the relationship between QRS duration ("QRS") and QRS amplitude ("RS-height"; RSh) in the murine ECG obtained during anesthesia. In mice harbouring a homozygous knockout of the transmembrane protein podoplanin (PDPN-/-; n = 10) we found both a shorter QRS and a greater RSh than in wild-type animals (n = 13). In both genotypes cumulative i.p. administration of 5 mg/kg and 10 mg/kg of the Na channel blocker flecainide resulted in dose-dependent QRS increase and RSh decrease, whereby the drug-induced changes in RSh were greater than in QRS. In both genotypes the flecainide-induced changes in QRS and in RSh were significantly correlated with each other (R = -0.56, P = 0.004). Whereas dispersion of QRS and RSh was similar between genotypes, dispersion of the ratio QRS/RSh was significantly smaller in PDPN-/- than in wild-types. We conclude that in the murine ECG QRS is inversely related to RSh. We suggest that both parameters should be considered in the analysis of ventricular conduction time in the murine ECG.


Assuntos
Flecainida , Sistema de Condução Cardíaco , Ratos , Animais , Camundongos , Flecainida/farmacologia , Eletrocardiografia , Ventrículos do Coração , Frequência Cardíaca
6.
Membranes (Basel) ; 12(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35736273

RESUMO

T-type Ca channels are strongly expressed and important in the developing heart. In the adult heart, these channels play a significant role in pacemaker tissues, but there is uncertainty about their presence and physiological relevance in the working myocardium. Here, we show that the T-type Ca channel isoforms Cav3.1 and Cav3.2 are expressed at a protein level in ventricular cardiomyocytes from healthy adult C57/BL6 mice. Myocytes isolated from adult wild-type and Cav3.2 KO mice showed considerable whole cell T-type Ca currents under beta-adrenergic stimulation with isoprenaline. We further show that the detectability of basal T-type Ca currents in murine wild-type cardiomyocytes depends on the applied experimental conditions. Together, these findings reveal the presence of functional T-type Ca channels in the membrane of ventricular myocytes. In addition, electrically evoked Ca release from the sarcoplasmic reticulum was significantly impaired in Cav3.2 KO compared to wild-type cardiomyocytes. Our work implies a physiological role of T-type Ca channels in the healthy adult murine ventricular working myocardium.

7.
Front Pharmacol ; 13: 809802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586063

RESUMO

Background and purpose: Ivabradine is clinically administered to lower the heart rate, proposedly by inhibiting hyperpolarization-activated cyclic nucleotide-gated cation channels in the sinoatrial node. Recent evidence suggests that voltage-gated sodium channels (VGSC) are inhibited within the same concentration range. VGSCs are expressed within the sinoatrial node and throughout the conduction system of the heart. A block of these channels thus likely contributes to the established and newly raised clinical indications of ivabradine. We, therefore, investigated the pharmacological action of ivabradine on VGSCs in sufficient detail in order to gain a better understanding of the pro- and anti-arrhythmic effects associated with the administration of this drug. Experimental Approach: Ivabradine was tested on VGSCs in native cardiomyocytes isolated from mouse ventricles and the His-Purkinje system and on human Nav1.5 in a heterologous expression system. We investigated the mechanism of channel inhibition by determining its voltage-, frequency-, state-, and temperature-dependence, complemented by a molecular drug docking to the recent Nav1.5 cryoEM structure. Automated patch-clamp experiments were used to investigate ivabradine-mediated changes in Nav1.5 inactivation parameters and inhibition of different VGSC isoforms. Key results: Ivabradine inhibited VGSCs in a voltage- and frequency-dependent manner, but did not alter voltage-dependence of activation and fast inactivation, nor recovery from fast inactivation. Cardiac (Nav1.5), neuronal (Nav1.2), and skeletal muscle (Nav1.4) VGSC isoforms were inhibited by ivabradine within the same concentration range, as were sodium currents in native cardiomyocytes isolated from the ventricles and the His-Purkinje system. Molecular drug docking suggested an interaction of ivabradine with the classical local anesthetic binding site. Conclusion and Implications: Ivabradine acts as an atypical inhibitor of VGSCs. Inhibition of VGSCs likely contributes to the heart rate lowering effect of ivabradine, in particular at higher stimulation frequencies and depolarized membrane potentials, and to the observed slowing of intra-cardiac conduction. Inhibition of VGSCs in native cardiomyocytes and across channel isoforms may provide a potential basis for the anti-arrhythmic potential as observed upon administration of ivabradine.

8.
Int J Neuropsychopharmacol ; 25(4): 280-282, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34871422

RESUMO

Psilocybin, a hallucinogen contained in "magic" mushrooms, holds great promise for the treatment of various psychiatric disorders, and early clinical trials are encouraging. Adverse cardiac events after intake of high doses of psilocybin and a trial reporting QT interval prolongation in the electrocardiogram attributed to the drug's main metabolite, psilocin, gave rise to safety concerns. Here we show that clinical concentrations of psilocin do not cause significant human ether-a-go-go-related gene (hERG) potassium channel inhibition, a major risk factor for adverse cardiac events. We conclude that hERG channel blockage by psilocin is not liable for psilocybin- associated cardiotoxic effects.


Assuntos
Alucinógenos , Transtornos Mentais , Cardiotoxicidade , Alucinógenos/efeitos adversos , Humanos , Transtornos Mentais/induzido quimicamente , Transtornos Mentais/tratamento farmacológico , Canais de Potássio , Psilocibina/efeitos adversos
9.
Dis Model Mech ; 14(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619211

RESUMO

Besides skeletal muscle abnormalities, Duchenne muscular dystrophy (DMD) patients present with dilated cardiomyopathy development, which considerably contributes to morbidity and mortality. Because the mechanisms responsible for the cardiac complications in the context of DMD are largely unknown, evidence-based therapy approaches are still lacking. This has increased the need for basic research efforts into animal models for DMD. Here, we characterized in detail the cardiovascular abnormalities of Dmdmdx rats, with the aim of determining the suitability of this recently established dystrophin-deficient small animal as a model for DMD.Various methods were applied to compare cardiovascular properties between wild-type and Dmdmdx rats, and to characterize the Dmdmdx cardiomyopathy. These methods comprised echocardiography, invasive assessment of left ventricular hemodynamics, examination of adverse remodeling and endothelial cell inflammation, and evaluation of vascular function, employing wire myography. Finally, intracellular Ca2+ transient measurements, and recordings of currents through L-type Ca2+ channels were performed in isolated single ventricular cardiomyocytes. We found that, similar to respective observations in DMD patients, the hearts of Dmdmdx rats show significantly impaired cardiac function, fibrosis and inflammation, consistent with the development of a dilated cardiomyopathy. Moreover, in Dmdmdx rats, vascular endothelial function is impaired, which may relate to inflammation and oxidative stress, and Ca2+ handling in Dmdmdx cardiomyocytes is abnormal.These findings indicate that Dmdmdx rats represent a promising small-animal model to elucidate mechanisms of cardiomyopathy development in the dystrophic heart, and to test mechanism-based therapies aiming to combat cardiovascular complications in DMD.


Assuntos
Cardiomiopatias/patologia , Sistema Cardiovascular , Modelos Animais de Doenças , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Miocárdio/patologia , Miócitos Cardíacos/patologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cardiomiopatia Dilatada/complicações , Distrofina/metabolismo , Endotélio Vascular/patologia , Fibrose/patologia , Ventrículos do Coração/fisiopatologia , Hemodinâmica , Homeostase , Humanos , Inflamação , Rim/metabolismo , Pulmão/metabolismo , Músculo Esquelético/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Peptidil Dipeptidase A , Fenótipo , Ratos , Estresse Mecânico
10.
Eur J Pharmacol ; 893: 173818, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33345856

RESUMO

Ivabradine blocks hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels, thereby lowering the heart rate, an action that is used clinically for the treatment of heart failure and angina pectoris. We and others have shown previously that ivabradine, in addition to its HCN channel blocking activity, also inhibits voltage-gated Na channels in vitro at concentrations that may be clinically relevant. Such action may reduce conduction velocity in cardiac atria and ventricles. Here, we explore the effect of administration of ivabradine on parameters of ventricular conduction and repolarization in the surface ECG of anesthetized mice. We found that 5 min after i.p. administration of 10 mg/kg ivabradine spontaneous heart rate had declined by ~13%, which is within the range observed in human clinical studies. At the same time a significant increase in QRS duration by ~18% was observed, suggesting a reduction in ventricular conduction velocity. During transesophageal pacing at heart rates between 100 and 220 beats/min there was no obvious rate-dependence of ivabradine-induced QRS prolongation. On the other hand, ivabradine produced substantial rate-dependent slowing of AV nodal conduction. We conclude that ivabradine prolongs conduction in the AV-node and in the ventricles in vivo.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Nó Atrioventricular/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Ivabradina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Nó Atrioventricular/fisiopatologia , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Camundongos Endogâmicos C57BL , Fatores de Tempo
11.
J Inherit Metab Dis ; 43(5): 1046-1055, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441337

RESUMO

Plasmalogens (Pls) are a class of membrane phospholipids which serve a number of essential biological functions. Deficiency of Pls is associated with common disorders such as Alzheimer's disease or ischemic heart disease. A complete lack of Pls due to genetically determined defective biosynthesis gives rise to rhizomelic chondrodysplasia punctata (RCDP), characterized by a number of severe disabling pathologic features and death in early childhood. Frequent cardiac manifestations of RCDP include septal defects, mitral valve prolapse, and patent ductus arteriosus. In a mouse model of RCDP, reduced nerve conduction velocity was partially rescued by dietary oral supplementation of the Pls precursor batyl alcohol (BA). Here, we examine the impact of Pls deficiency on cardiac impulse conduction in a similar mouse model (Gnpat KO). In-vivo electrocardiographic recordings showed that the duration of the QRS complex was significantly longer in Gnpat KO mice than in age- and sex-matched wild-type animals, indicative of reduced cardiac conduction velocity. Oral supplementation of BA for 2 months resulted in normalization of cardiac Pls levels and of the QRS duration in Gnpat KO mice but not in untreated animals. BA treatment had no effect on the QRS duration in age-matched wild-type mice. These data suggest that Pls deficiency is associated with increased ventricular conduction time which can be rescued by oral BA supplementation.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Condrodisplasia Punctata Rizomélica/tratamento farmacológico , Éteres de Glicerila/farmacologia , Plasmalogênios/biossíntese , Administração Oral , Animais , Arritmias Cardíacas/etiologia , Condrodisplasia Punctata Rizomélica/fisiopatologia , Suplementos Nutricionais , Modelos Animais de Doenças , Eletrocardiografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Éteres Fosfolipídicos/farmacologia
12.
Am J Physiol Heart Circ Physiol ; 318(6): H1436-H1440, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383994

RESUMO

Cardiac arrhythmias significantly contribute to mortality in Duchenne muscular dystrophy (DMD), a degenerative muscle disease triggered by mutations in the gene encoding for the intracellular protein dystrophin. A major source for the arrhythmias in patients with DMD is impaired ventricular impulse conduction, which predisposes for ventricular asynchrony, decreased cardiac output, and the development of reentrant mechanisms. The reason for ventricular conduction impairments and the associated arrhythmias in the dystrophic heart has remained unidentified. In the present study, we explored the hypothesis that dystrophin-deficient cardiac Purkinje fibers have reduced Na+ currents (INa), which would represent a potential mechanism underlying slowed ventricular conduction in the dystrophic heart. Therefore, by using a Langendorff perfusion system, we isolated Purkinje fibers from the hearts of adult wild-type control and dystrophin-deficient mdx mice. Enhanced green fluorescent protein (eGFP) expression under control of the connexin 40 gene allowed us to discriminate Purkinje fibers from eGFP-negative ventricular working cardiomyocytes after cell isolation. Finally, we recorded INa from wild-type and dystrophic mdx Purkinje fibers for comparison by means of the whole cell patch clamp technique. We found substantially reduced INa densities in mdx compared with wild-type Purkinje fibers, suggesting that dystrophin deficiency diminishes INa. Because Na+ channels in the Purkinje fiber membrane represent key determinants of ventricular conduction velocity, we propose that reduced INa in Purkinje fibers at least partly explains impaired ventricular conduction and the associated arrhythmias in the dystrophic heart.NEW & NOTEWORTHY Dystrophic cardiac Purkinje fibers have abnormally reduced Na+ current densities. This explains impaired ventricular conduction in the dystrophic heart.


Assuntos
Arritmias Cardíacas/metabolismo , Doença do Sistema de Condução Cardíaco/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Ramos Subendocárdicos/metabolismo , Canais de Sódio/metabolismo , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Doença do Sistema de Condução Cardíaco/complicações , Doença do Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/fisiopatologia , Sódio/metabolismo
13.
Pflugers Arch ; 472(1): 61-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31822999

RESUMO

Neuronal nitric oxide synthase (nNOS) is considered a regulator of Cav1.2 L-type Ca2+ channels and downstream Ca2+ cycling in the heart. The commonest view is that nitric oxide (NO), generated by nNOS activity in cardiomyocytes, reduces the currents through Cav1.2 channels. This gives rise to a diminished Ca2+ release from the sarcoplasmic reticulum, and finally reduced contractility. Here, we report that nNOS inhibitor substances significantly increase intracellular Ca2+ transients in ventricular cardiomyocytes derived from adult mouse and rat hearts. This is consistent with an inhibitory effect of nNOS/NO activity on Ca2+ cycling and contractility. Whole cell currents through L-type Ca2+ channels in rodent myocytes, on the other hand, were not substantially affected by the application of various NOS inhibitors, or application of a NO donor substance. Moreover, the presence of NO donors had no effect on the single-channel open probability of purified human Cav1.2 channel protein reconstituted in artificial liposomes. These results indicate that nNOS/NO activity does not directly modify Cav1.2 channel function. We conclude that-against the currently prevailing view-basal Cav1.2 channel activity in ventricular cardiomyocytes is not substantially regulated by nNOS activity and NO. Hence, nNOS/NO inhibition of Ca2+ cycling and contractility occurs independently of direct regulation of Cav1.2 channels by NO.


Assuntos
Potenciais de Ação , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Feminino , Ventrículos do Coração/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ornitina/análogos & derivados , Ornitina/farmacologia , Ratos , Ratos Sprague-Dawley
14.
Cell Physiol Biochem ; 53(1): 36-48, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31169990

RESUMO

BACKGROUND/AIMS: Ivabradine lowers the heart rate by inhibition of hyperpolarisation-activated cyclic nucleotide-gated (HCN) channels mediating the 'funny' pacemaker current If in the sinoatrial node. It is clinically approved for the treatment of heart failure and angina pectoris. Due to its proposed high selectivity for If administration of ivabradine is not associated with the side effects commonly observed following the application of other heart rate lowering agents. Recent evidence, however, has shown significant affinity of ivabradine towards Kv11.1 (ether-a-go-go related gene, ERG) potassium channels. Despite the inhibition of Kv11.1 channels by ivabradine, cardiac action potential (AP) duration and heart rate corrected QT interval (QTc) of the human electrocardiogram (ECG) were not prolonged. We thus surmised that compensatory mechanisms might counteract the drug's inhibitory action on Kv11.1. METHODS: The effects of ivabradine on human Kv11.1 and Kv7.1 potassium, Cav1.2 calcium, and Nav1.5 sodium channels, heterologously expressed in tsA-201 cells, were studied in the voltage-clamp mode of the whole cell patch clamp technique. In addition, changes in action potential parameters of human induced pluripotent stem cell (iPSC) derived cardiomyocytes upon application of ivabradine were studied with current-clamp experiments. RESULTS: Here we show that ivabradine exhibits significant affinity towards cardiac ion channels other than HCN. We demonstrate for the first time inhibition of human voltage-gated Nav1.5 sodium channels at therapeutically relevant concentrations. Within this study we also confirm recent findings of human Kv11.1 inhibition by low µM concentrations of ivabradine and observed no prolongation of ventricular-like APs in cardiomyocytes derived from iPSCs. CONCLUSION: Our results provide an explanation why ivabradine, despite its affinity for Kv11.1 channels, does not prolong the cardiac AP and QTc interval. Furthermore, our results suggest the inhibition of voltage-gated Nav1.5 sodium channels to underlie the recent observations of slowed atrioventricular conduction by increased atrial-His bundle intervals upon administration of ivabradine.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Canais Iônicos/metabolismo , Ivabradina/farmacologia , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Canais Iônicos/antagonistas & inibidores , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/química , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp
15.
Sci Rep ; 8(1): 631, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330525

RESUMO

Inactivation of voltage-gated Na+ channels (VGSC) is essential for the regulation of cellular excitability. The molecular rearrangement underlying inactivation is thought to involve the intracellular linker between domains III and IV serving as inactivation lid, the receptor for the lid (domain III S4-S5 linker) and the pore-lining S6 segements. To better understand the role of the domain IV S6 segment in inactivation we performed a cysteine scanning mutagenesis of this region in rNav 1.4 channels and screened the constructs for perturbations in the voltage-dependence of steady state inactivation. This screen was performed in the background of wild-type channels and in channels carrying the mutation K1237E, which profoundly alters both permeation and gating-properties. Of all tested constructs the mutation I1581C was unique in that the mutation-induced gating changes were strongly influenced by the mutational background. This suggests that I1581 is involved in specific short-range interactions during inactivation. In recently published crystal structures VGSCs the respective amino acids homologous to I1581 appear to control a bend of the S6 segment which is critical to the gating process. Furthermore, I1581 may be involved in the transmission of the movement of the DIII voltage-sensor to the domain IV S6 segment.


Assuntos
Cisteína/genética , Proteínas Musculares/genética , Mutação , Canais de Sódio/genética , Xenopus laevis/genética , Animais , Ativação Enzimática , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas Musculares/química , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/química
16.
Physiol Rep ; 6(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29333726

RESUMO

Duchenne muscular dystrophy (DMD), caused by mutations in the gene encoding for the cytoskeletal protein dystrophin, is linked with severe cardiac complications including cardiomyopathy development and cardiac arrhythmias. We and others recently reported that currents through L-type calcium (Ca) channels were significantly increased, and channel inactivation was reduced in dystrophin-deficient ventricular cardiomyocytes derived from the mdx mouse, the most commonly used animal model for human DMD. These gain-of-function Ca channel abnormalities may enhance the risk of Ca-dependent arrhythmias and cellular Ca overload in the dystrophic heart. All studies, which have so far investigated L-type Ca channel properties in dystrophic cardiomyocytes, have used hearts from either neonatal or young adult mdx mice as cell source. In consequence, the dimension of the Ca channel abnormalities present in the severely-diseased aged dystrophic heart has remained unknown. Here, we have studied potential abnormalities in Ca currents and intracellular Ca transients in ventricular cardiomyocytes derived from aged dystrophic mdx mice. We found that both the L-type and T-type Ca current properties of mdx cardiomyocytes were similar to those of myocytes derived from aged wild-type mice. Accordingly, Ca release from the sarcoplasmic reticulum was normal in cardiomyocytes from aged mdx mice. This suggests that, irrespective of the presence of a pronounced cardiomyopathy in aged mdx mice, Ca currents and Ca release in dystrophic cardiomyocytes are normal. Finally, our data imply that dystrophin- regulation of L-type Ca channel function in the heart is lost during aging.


Assuntos
Cálcio/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Envelhecimento/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Células Cultivadas , Ventrículos do Coração/citologia , Ventrículos do Coração/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/metabolismo
17.
ChemMedChem ; 12(22): 1819-1822, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29045055

RESUMO

The lupin alkaloid sparteine is a well-known chiral diamine with a range of applications in asymmetric synthesis, as well as a blocker of voltage-gated sodium channels (VGSCs). However, there is only scarce information on the VGSC-blocking activity of sparteine derivatives where the structure of the parent alkaloid is retained. Building on the recent renewed availability of sparteine and derivatives we report herein how modification of sparteine at position 2 produces irreversible blockers of VGSCs. These compounds could be clinically envisaged as long-lasting local anesthetics.


Assuntos
Bloqueadores dos Canais de Sódio/farmacologia , Esparteína/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Estrutura Molecular , Bloqueadores dos Canais de Sódio/síntese química , Bloqueadores dos Canais de Sódio/química , Esparteína/síntese química , Esparteína/química , Relação Estrutura-Atividade
18.
Toxicol Appl Pharmacol ; 329: 309-317, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28641963

RESUMO

Retigabine, currently used as antiepileptic drug, has a wide range of potential medical uses. Administration of the drug in patients can lead to QT interval prolongation in the electrocardiogram and to cardiac arrhythmias in rare cases. This suggests that the drug may perturb the electrical properties of the heart, and the underlying mechanisms were investigated here. Effects of retigabine on currents through human cardiac ion channels, heterologously expressed in tsA-201 cells, were studied in whole-cell patch-clamp experiments. In addition, the drug's impact on the cardiac action potential was tested. This was done using ventricular cardiomyocytes isolated from Langendorff-perfused guinea pig hearts and cardiomyocytes derived from human induced pluripotent stem cells. Further, to unravel potential indirect effects of retigabine on the heart which might involve the autonomic nervous system, membrane potential and noradrenaline release from sympathetic ganglionic neurons were measured in the absence and presence of the drug. Retigabine significantly inhibited currents through hKv11.1 potassium, hNav1.5 sodium, as well as hCav1.2 calcium channels, but only in supra-therapeutic concentrations. In a similar concentration range, the drug shortened the action potential in both guinea pig and human cardiomyocytes. Therapeutic concentrations of retigabine, on the other hand, were sufficient to inhibit the activity of sympathetic ganglionic neurons. We conclude that retigabine- induced QT interval prolongation, and the reported cases of cardiac arrhythmias after application of the drug in a typical daily dose range, cannot be explained by a direct modulatory effect on cardiac ion channels. They are rather mediated by indirect actions at the level of the autonomic nervous system.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anticonvulsivantes/toxicidade , Arritmias Cardíacas/induzido quimicamente , Carbamatos/toxicidade , Gânglios Simpáticos/efeitos dos fármacos , Bloqueadores Ganglionares/toxicidade , Sistema de Condução Cardíaco/efeitos dos fármacos , Canais Iônicos/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Fenilenodiaminas/toxicidade , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Bloqueadores dos Canais de Cálcio/toxicidade , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Gânglios Simpáticos/metabolismo , Gânglios Simpáticos/fisiopatologia , Cobaias , Sistema de Condução Cardíaco/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Preparação de Coração Isolado , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Norepinefrina/metabolismo , Bloqueadores dos Canais de Potássio/toxicidade , Ratos Sprague-Dawley , Medição de Risco , Fatores de Tempo , Transfecção , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade
19.
Channels (Austin) ; 11(2): 101-108, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-27560040

RESUMO

Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current IK1, which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential IK1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that IK1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.


Assuntos
Distrofina/deficiência , Ventrículos do Coração/citologia , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Distrofina/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Mol Pharmacol ; 88(5): 866-79, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358763

RESUMO

The clinically important suppression of high-frequency discharges of excitable cells by local anesthetics (LA) is largely determined by drug-induced prolongation of the time course of repriming (recovery from inactivation) of voltage-gated Na(+) channels. This prolongation may result from periodic drug-binding to a high-affinity binding site during the action potentials and subsequent slow dissociation from the site between action potentials ("dissociation hypothesis"). For many drugs it has been suggested that the fast inactivated state represents the high-affinity binding state. Alternatively, LAs may bind with high affinity to a native slow-inactivated state, thereby accelerating the development of this state during action potentials ("stabilization hypothesis"). In this case, slow recovery between action potentials occurs from enhanced native slow inactivation. To test these two hypotheses we produced serial cysteine mutations of domain IV segment 6 in rNav1.4 that resulted in constructs with varying propensities to enter fast- and slow-inactivated states. We tested the effect of the LA lidocaine on the time course of recovery from short and long depolarizing prepulses, which, under drug-free conditions, recruited mainly fast- and slow-inactivated states, respectively. Among the tested constructs the mutation-induced changes in native slow recovery induced by long depolarizations were not correlated with the respective lidocaine-induced slow recovery after short depolarizations. On the other hand, for long depolarizations the mutation-induced alterations in native slow recovery were significantly correlated with the kinetics of lidocaine-induced slow recovery. These results favor the "dissociation hypothesis" for short depolarizations but the "stabilization hypothesis" for long depolarizations.


Assuntos
Anestésicos Locais/farmacologia , Lidocaína/farmacologia , Proteínas Musculares/antagonistas & inibidores , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Proteínas Musculares/fisiologia , Mutagênese , Ratos , Canais de Sódio/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...